
vineelkovvuri.github.io

Git – Part 2
Vineel Kovvuri

Senior SDE @ Microsoft

Efficient tools and techniques for modern software development

1

vineelkovvuri.github.io

Agenda

• Recap from part 1
• Branches
• Merging Branches
• Rebasing Branches
• Resolving Conflicts

2

• Push/Pull/Fetch
• Github

Not in Agenda

vineelkovvuri.github.io

Recap

Create Repo git init Initialize a repository

Inspect Repo git status Know the status of the repository

Create
Commits

git add Add files for staging

git commit Create commit of the staged files

Inspect
Commits

git log View the commit log

git diff/difftool See changes between the commits

Undo
Commits

git reset Undo commit(unpack the commit)

git checkout Discard the changes

vineelkovvuri.github.io

What are branches and why should I care?

• Branch is just a sequence of commits with a parent child relationship
• The default branch is always referred as master or main

c1 c2 c3 c4

• The content of the file and folder structure of the repo is determined by the commits on current
active branch

I am master branch
c1 c2 c3 c4

b1 b2 b3 b4
I am feature branch

• git branch will show *all branches and highlights the current active branch

• Branching helps in working with multiple features independently
• At any given point in time, There can be only one active branch in a repository

vineelkovvuri.github.io

Branching

c1 c2

git branch feature HEAD~1

git checkout –b feature master = git branch feature master + git checkout feature

c1 c2

HEAD after checkout of feature

• git checkout feature is used to switch to the branch named ‘feature’

c1 c2

f1 f2

• With each commit on the feature branch, The HEAD
moves forward on the feature branch

• git branch feature master will create a new branch named ‘feature’ from
master’s HEAD commit

c1 c2

git branch feature HEAD

vineelkovvuri.github.io

Merging
• git merge is used to create a merge commit between two or more

branches – This is called merging branches!

git merge feature

c1 c2

f1 f2

c3 c4

HEAD on master branch after checkout of master

Mc1 c2

f1 f2

c3 c4

Merge commit created on master after git merge command

vineelkovvuri.github.io

Rebasing

• git rebase realigns the base commit of the current branch with other branch

c1 c2

f1 f2

c3 c4

Base commit of feature branch

Feature branch before git rebase

c1 c2

f1’ f2’

c3 c4

Re based base commit of feature branch

Feature branch after git rebase

git rebase master

Contains changes made before rebase
 May not contain the same changes as f1 because of merge conflicts

f1

f1’

vineelkovvuri.github.io

Resolving conflicts manually in Git
• git merge and git rebase can sometime lead to merge conflicts

c1 c2

f1’ f2’

c3 c4

git rebase master

c1 c2

f1 f2

c3 c4

Line 2 in Helloworld.c modified

Line 2 in Helloworld.c modified

vineelkovvuri.github.io

Branching
Commands

git branch List all branches

git branch <new> <existing> Create <new> branch from <existing> branch

git checkout <branch> Switch to <branch>

git checkout –b <new> <existing> Create a new branch and switch to that branch

Merge Command git merge <feature> Merge current branch with <feature> branch

Rebase Command git rebase <feature> Rebase current branch with <feature> branch

Recap

vineelkovvuri.github.io

References

• https://github.com/vineelkovvuri/gvpcoe-sessions-2024/blob/master/Git-Part2
• https://stackoverflow.com/

10

https://github.com/vineelkovvuri/gvpcoe-sessions-2024/blob/master/Git-Part2
https://stackoverflow.com/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: References

