Efficient tools and techniques for modern software development

Git — Part 2

Vineel Kovvuri
Senior SDE (@ Microsoft

Agenda

* Recap from part 1

* Branches

* Merging Branches

* Rebasing Branches
* Resolving Conflicts

Not in Agenda

e Push/Pull/Fetch
e Github

Recap

Create Repo git init Initialize a repository

Inspect Repo | git status Know the status of the repository
Create git add Add files for staging

Commits git commit Create commit of the staged files
Inspect git log View the commit log

Commits git diff/difftool | See changes between the commits
Undo git reset Undo commit(unpack the commit)
Commits git checkout | Discard the changes

What are branches and why should I care?

* Branchis just a sequence of commits with a parent child relationship
* The default branch is always referred as master or main -4—-4—-4—-
* Branching helps in working with multiple features independently

* Atany given point in time, There can be only one branch in a repository

| am feature branch

The content of the file and folder structure of the repo is determined by the commits on current
branch

:“MyProject>git branch
opt_helloworld

git branch will show *all branches and highlights the current active branch

Branching

* git branch feature master will create a new branch named ‘feature’ from
master’s HEAD commit

C:“MyProject>git branch
- feature .
- cad

git branch feature HEAD~1

git branch feature HEAD

 git checkout feature is used to switch to the branch named ‘feature’

C:sMyProject>git checkout feature

Bwitched to branch ‘feature’
4_- C:sMyProject>git hranch
a3
master

HEAD after checkout of feature

* With each commit on the feature branch, The HEAD -
moves forward on the feature branch

—iK

git checkout -b feature master = git branch feature master + git checkout feature

Merging
e git mergeis used to create a merge commit between two or more
branches - This is called merging branches!

- E-—

\- git merge feature

HEAD on master branch after checkout of master Merge commit created on master after git merge command

ssMyProject>git log

ommit alabh250f3eebbafedadafdfbh2abalai2bhh?7d3

erge: d?51182 F3fBa3h

uthor: Uineel Humar Reddy Hovvuri <vineel.kovvurilBgmail.com’
ate: Tue Jul 14 19:85:82 28015 +A5%38

Merge branch 'feature’

:“MyProject>git log ——graph —oneline ——decorate —all
afa525@ <HEAD, master» Merge branch ‘feature’

= f3f8ads <feature? Optimised Hello Yorld
d?751182 Comment added

eefa?3a Adding .gitignore
?48a3dab My First helloWorld commit

Rebasing

« gitrebase realigns the base commit of the current branch with other branch

g am e -

git rebase master

= i =

Base commit of feature branch Re based base commit of feature branch
Feature branch before git rebase Feature branch after git rebase

Bl Contains changes made before rebase
- May not contain the same changes as f1 because of merge conflicts

Resolving conflicts manually in Git
* git merge and git rebase can sometime lead to merge conflicts

Line 2 in Helloworld.c modified
e
EH B B 5 BB

\- git rebase master {
e et

Line 2 in Helloworld.c modified

:~HelloWorldProject*yit rebase master
irst,. rewinding head to replay your work on top of it...

polying: Comment updated in feature
sing index info to reconstruct a bhase tree...

Hellolorld.c
Falling back to patching base and 3-—way merge...

uto—merging Hellollorld.c
COMFLICT <content»: Merge conflict in HelloWorld.c

Failed to merge in the changes.
atch failed at 8881 Comment updated in feature
he copy of the patch that failed is found in:

c:/HelloWorldProjects.git- rebase—applyspatch

printf(
return

hen you have resolved this problem,. vun “yit rebase ——continue|'.
If you prefer to skip this patch,. run "git rebase —szkip" instead.
o check out the original branch and stop rebhasing, pun “git rebase ——ahort'.

Recap

Branching
Commands

git branch

List all branches

git branch <new> <existing>

Create <new> branch from <existing> branch

git checkout <branch>

Switch to <branch>

git checkout —-b <new> <existing>

Create a new branch and switch to that branch

Merge Command

git merge <feature>

Merge current branch with <feature> branch

Rebase Command

git rebase <feature>

Rebase current branch with <feature> branch

References

* https://github.com/vineelkovvuri/gvpcoe-sessions-2024/blob/master/Git-Part2

e https://stackoverflow.com/

https://github.com/vineelkovvuri/gvpcoe-sessions-2024/blob/master/Git-Part2
https://stackoverflow.com/

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: References

